DFROBOT SEN0322

Gravity: I2C Electrochemical Oxygen Sensor User Manual

Model: SEN0322 | Brand: DFROBOT

1. Sarrera

The DFROBOT Gravity: I2C Electrochemical Oxygen Sensor is a high-accuracy module designed for precise measurement of ambient oxygen concentration. Utilizing advanced electrochemical principles, this sensor offers exceptional anti-interference capabilities, high stability, and superior sensitivity. It is an ideal solution for a wide range of applications including portable devices, air quality monitoring systems, and industrial environments such as mines, warehouses, and other spaces where air circulation may be limited.

This compact sensor provides an I2C output, allowing for seamless integration with popular microcontrollers like Arduino Uno, ESP32, and Raspberry Pi. Its plug-and-play design, coupled with readily available sample code, simplifies development and deployment, making it suitable for both educational and professional projects.

2. Produktua amaitu daview

2.1 Ezaugarri nagusiak

  • High-Accuracy Oxygen Detection: Measures O₂ concentration from 0% to 25% Vol with a resolution of 0.15% Vol.
  • High Precision & Anti-Interference: Features excellent sensitivity (0.10±0.05 mA in air), repeatability (<2%), and long-term stability (<2%/month).
  • Erantzun denbora azkarra: Provides reliable readings with a response time of ≤15 seconds.
  • Bateragarritasun zabala: Operates with 3.3V to 5.5V DC input and outputs via I2C, compatible with Arduino, ESP32, and Raspberry Pi.
  • Plug & Play: Includes Gravity interface and sample code for quick setup and calibration.
  • Iraunkorra eta fidagarria: Designed for industrial-grade reliability with a 2-year lifespan in air and robust performance in harsh conditions (-20~50°C, 0~99%RH non-condensing).

2.2 Osagaiak

The Gravity: I2C Electrochemical Oxygen Sensor package includes the following components:

  • Gravity: I2C Electrochemical Oxygen Sensor Module (SEN0322)
  • Gravity-4P I2C/UART Sensor Cable
  • Muntatzeko Torlojuak
Gravity I2C Electrochemical Oxygen Sensor kit contents

Figure 2.2.1: Gravity: I2C Electrochemical Oxygen Sensor module with connecting cable and mounting screws.

2.3 Sensor Layout

Goiena view of the Gravity I2C Electrochemical Oxygen Sensor

2.3.1. irudia: Goikoa view of the sensor module, showing the oxygen sensing element.

Behean view of the Gravity I2C Electrochemical Oxygen Sensor

2.3.2. Irudia: Behea view of the sensor module, displaying the Gravity interface and I2C pins.

Diagram of sensor top view with LED and Calibration Button labels

Figure 2.3.3: Diagram illustrating the LED indicator and Calibration Button on the sensor module.

Diagram of sensor bottom view with I2C pin labels

Figure 2.3.4: Diagram showing the I2C communication pins (SDA, SCL, GND, VCC) and address selection switch.

3. Konfigurazioa

3.1 Hardware konexioa

The Gravity: I2C Electrochemical Oxygen Sensor connects to your microcontroller via the I2C interface. Use the provided Gravity-4P I2C/UART Sensor Cable for connection.

  1. Connect the 4-pin Gravity cable to the sensor module's connector.
  2. Connect the other end of the Gravity cable to the I2C port on your Arduino, ESP32, or Raspberry Pi board. Ensure the pins are matched correctly:
    • SDA (Data Line) to SDA pin on microcontroller
    • SCL (Clock Line) to SCL pin on microcontroller
    • VCC (Power) to 3.3V or 5V (compatible with 3.3V-5.5V)
    • GND (Ground) to GND pin on microcontroller
  3. Optionally, adjust the I2C address using the switch on the back of the sensor if multiple I2C devices are used and address conflicts arise. Refer to the sensor's datasheet for default and alternative addresses.
Connection diagram of oxygen sensor to Arduino

3.1.1. irudia: Adibample hardware connection of the oxygen sensor to an Arduino board.

3.2 Softwarearen konfigurazioa

To interface with the sensor, you will need to use the appropriate library for your chosen microcontroller platform. DFROBOT provides sample code and libraries for Arduino, ESP32, and Raspberry Pi, which can typically be found on their official product page or GitHub repository.

  1. Download and install the necessary library for the Gravity: I2C Electrochemical Oxygen Sensor (e.g., `DFRobot_OxygenSensor` for Arduino IDE).
  2. Ireki example sketch provided with the library. This sketch typically includes basic code for initializing the sensor, performing calibration, and reading oxygen concentration.
  3. Upload the code to your microcontroller.

4. Funtzionamendu-argibideak

4.1 Kalibrazioa

The sensor can be calibrated in the air, which is typically assumed to have an oxygen concentration of 20.9% Vol. Follow these steps for calibration:

  1. Ensure the sensor is connected and powered on.
  2. Place the sensor in a well-ventilated area with normal atmospheric air.
  3. Press and hold the calibration button on the sensor module for approximately 3-5 seconds until the LED indicator changes state (e.g., blinks or changes color), indicating calibration mode.
  4. Release the button. The sensor will perform an automatic calibration based on the ambient oxygen level. The LED will typically return to its normal operating state once calibration is complete.
  5. Alternatively, some libraries may allow software-based calibration. Refer to the specific library documentation for details.

4.2 Reading Oxygen Data

After successful setup and calibration, you can read the oxygen concentration data from the sensor. The provided sample code will typically demonstrate how to do this.

  • Initialize the sensor object in your code.
  • Use the appropriate function (e.g., `getOxygenData()` or `readOxygenConcentration()`) from the sensor library to retrieve the current oxygen level.
  • The data will be returned as a floating-point number representing the oxygen concentration in percentage by volume (% Vol).
  • You can then display this data on a serial monitor, LCD, or integrate it into your application logic.

5. Mantentzea

5.1 Garbiketa

The sensor module generally requires minimal cleaning. If dust or debris accumulates on the sensor surface, gently wipe it with a soft, dry, lint-free cloth. Avoid using liquid cleaners or abrasive materials, as these can damage the sensing element.

5.2 Biltegiratzea

When not in use, store the sensor in a cool, dry environment, away from direct sunlight and extreme temperatures. Keep it in its original packaging or an anti-static bag to protect it from physical damage and electrostatic discharge.

5.3 Sensor Lifetime

The electrochemical sensing element has a typical lifespan of 2 years when exposed to air. The sensor's performance may degrade over time, and recalibration or replacement may be necessary to maintain accuracy.

6. Arazoak

GaiaKausa posibleaIrtenbidea
No data output / Sensor not detectedKableatu okerra
Incorrect I2C address
Energia hornidura arazoa
Library not installed or incorrect code
Verify all connections (SDA, SCL, VCC, GND).
Check the I2C address switch setting and ensure it matches the code.
Confirm power supply is within 3.3V-5.5V.
Ensure the correct library is installed and the sample code is uploaded correctly.
Irakurketa okerrakSentsore ez dago kalibratuta
Ingurumenaren interferentziak
Sensor aging
Perform air calibration as described in Section 4.1.
Ensure the sensor is in a stable environment during measurement.
Consider sensor replacement if it's past its expected lifespan or consistently provides erratic readings after recalibration.
Kalibrazioak huts egin duIncorrect calibration procedure
Sensor not in fresh air
Sentsore akastuna
Review calibration steps carefully.
Ensure the sensor is in an open area with normal atmospheric oxygen (approx. 20.9% Vol) during calibration.
If issues persist, the sensor may be faulty.

7. Zehaztapenak

ParametroaBalioa
Detekzio-eremua0 ~ 25% Vol
Ebazpena% 0.15 bol
Zehaztasuna±1.5% Vol (typical)
Erantzun denbora (T90)≤15 segundo
Bolumen eragileatage3.3V ~ 5.5V DC
Irteera InterfazeaI2C
Funtzionamendu-tenperatura-20°C ~ 50°C
Funtzionamenduaren hezetasuna0 ~ 99% RH (ez kondentsatzailea)
Sentsorearen bizitza2 urte (airean)
Dimentsioak (Modulua)Gutxi gorabehera. 2.48 x 2.2 x 1.14 hazbete (63 x 56 x 29 mm)
Pisua37 gramo (1.31 ontza)
MaterialaNylona

8. Bermea eta Laguntza

DFROBOT products are designed for reliability and performance. For specific warranty information, technical support, or further assistance, please refer to the official DFROBOT website or contact their customer service directly. You can often find detailed datasheets, application notes, and community forums on their support pages.

DFROBOT Official Webgunea: https://www.dfrobot.com/

Erlazionatutako dokumentuak - SEN0322

Aurreview H3LIS200DL Triple Axis Accelerometer - DFRobot
DFRobot's H3LIS200DL is a low-power, high-performance 3-axis linear accelerometer with selectable scales (±100g/±200g) and I2C interface. Ideal for Arduino and Raspberry Pi projects, offering features like free-fall detection and shock detection.
Aurreview DFRobot Weather Station Manual: Assembly and Operation Guide
This comprehensive manual from DFRobot guides users through the assembly, software setup, and operation of the Weather Station kit. Learn to build and utilize your own environmental monitoring device.
Aurreview DFRobot SEN0158 Gravity IR Positioning Camera - Specifications and Guide
Comprehensive guide to the DFRobot SEN0158 Gravity IR Positioning Camera. Learn about its features, specifications, pinout, connection diagrams, Arduino and Processing sample code, and frequently asked questions for tracking IR objects and flame detection.
Aurreview DFRobot Turbidity Sensor SEN0189: Specifications, Connection, and Examples
A comprehensive guide to the DFRobot Turbidity Sensor SKU: SEN0189, detailing its technical specifications, analog and digital output modes, connection diagrams, Arduino code examples, and performance characteristics for water quality monitoring.
Aurreview DFRobot Weather Station Manual - Assembly, Software, and Usage Guide
Comprehensive guide from DFRobot detailing the assembly, software installation, and operational methods for the DFRobot Weather Station. Includes component lists, wiring diagrams, and usage scenarios.
Aurreview FireBeetle 2 ESP32-S3-U Minicomputer User Manual - DFRobot
User manual for the DFRobot FireBeetle 2 ESP32-S3-U minicomputer, featuring WiFi, Bluetooth, an OV2640 camera, and external antenna. Includes technical specifications, usage guidelines, and assembly instructions.